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1 Final Report

This report documents the major project findings during the duration of the AFOSR Young Investigator
Program titled Information Collection and Fusion for Space Situation Awareness. The principal goals of
this on-going research work are threefold:

1. To understand how uncertain input variables such as geometric properties of RSO and atmospheric
drag or solar radiation pressure (SRP) coefficient and random stochastic forcing affect the output of a
dynamical model for orbit propagation.

2. To estimate orbit states together with quantitative measures of confidence associated with those esti-
mates by combining system prediction with observations from various resources.

3. To design robust methodology for optimal sensor management while taking into account the uncer-
tainties in the system dynamics.

The highlights of the achievements of this research work are described as follows:

2 Adaptive Gaussian Mixture Model:

A major part of this research work focused on developing an approach to improve the statistical validity
of Resident Space Objects (RSO) orbit estimates and uncertainties as well as a method of associating obser-
vations with the correct RSO and classifying events in near real time. Our approach involved studying an
adaptive Gaussian mixture model (AGMM) solution to the Fokker-Planck-Kolmogorov Equation (FPKE)
for its applicability to the RSO tracking problem. The FPKE describes the time-evolution of stochastic
systems and the Adaptive Gaussian Sum Filter (AGSF) is a solution to the equation that allows for non-
Gaussian pdfs. The AGSF algorithm is designed to be scalable, relatively efficient for solutions of this
type, and able to handle the nonlinear effects which are common in the estimation of RSO orbit states. In
addition, techniques for data association that are compatible with the AGSF based on entropy theory were
examined. The AGSF and corresponding observation association methods were evaluated using simulated
data to determine their performance and feasibility. The key idea of the AGSF is to approximate the state
pdf by a finite sum of Gaussian density functions whose mean and covariance are propagated from one
time-step to the next using linear theory. The weights of the Gaussian kernels are updated at every time-step
by requiring the sum to satisfy the FPKE. When properly formulated, the mixture problem in the AGSF can
be solved efficiently and accurately using convex optimization solvers, even if the mixture model includes
many terms. This methodology effectively decouples a large uncertainty propagation problem into many
small problems. As a consequence, the solution algorithm can be parallelized on most High Performance
Computing (HPC) systems. Finally, a Bayesian framework can be used on the AGSF structure to assimilate
(noisy) observational data with model forecasts.

There is no doubt that number of Gaussian kernels in the mixture model approximation plays an impor-
tant role in its accuracy and computational complexity. Adaptive Gaussian Sum Mixture (AGMM) method
to solve the Fokker-Planck-Kolmogorov Equation (FPKE) has been modified to automatically select number
of Gaussian kernels based upon FPKE error feedback. Critical Gaussian kernels are identified which needs
to be split and merged for better mixture approximation. Furthermore, sparse approximation tools (L1 norm
minimization) have been used to obtain a compact representation of the mixture model.
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Figure 1 shows the contours of the RSO orbital state pdf at different time. The RSO orbit corresponds to
low Earth orbit at an altitude of 700km. Atmospheric drag and first harmonic of non-sphercal gravity Initial
pdf was approximated using one Gaussian component having mean µ0 and covariance Σ0.

µ0 = [7000 0 0 0− 1.0374 7.4771] (1)

Σ0 = diag (0.01, 0.01, 0.01, 0.000001, 0.000001, 0.000001) (2)

The initial mean and covariance were propagated for 6 hours using the equations of unscented Kalman
filter. Number of Gaussian kernels in mixture approximation were automatically selected by making use of
adaptive split and merge strategy in conjunction with Kullbeck-Leibler measure. 125000 monte carlo runs
were used as truth to verify the developed approach. Figure 1 shows the contours of the pdf at different
time. One can see that the initial Gaussian pdf characterised by circular contour evolves into non-Gaussian
pdf over time. The contours of the pdf match with the contours of the monte carlo run. One can also see the
change in the number of components at different time as a result of split and merge technique.

The findings of this work are disseminated through following publications:

• K. Vishwajeet, P. Singla and M. Jah, “Nonlinear Uncertainty Propagation for Perturbed Two-Body Or-
bits,” AIAA Journal of Guidance, Control and Dynamics, Accepted, January 2014, DOI: 10.2514/1.G000472.

• K. Vishwajeet and P. Singla, “Adaptive Split and Merge Technique for Gaussian Mixture Models to
Solve Kolmogorov Equation,” 2014 American Control Conference, Portland, OR, June 4–6, 2014.

• K. Vishwajeet and P. Singla, “Adaptive Split and Merge Algorithm for Gaussian Mixture Models,”
2013 Astrodynamics Specialist Conference, Hilton Head, North Carolina.

• K. Vishwajeet and P. Singla, “Sparse Approximation Based Gaussian Mixture Model Approach for
Uncertainty Propagation for Nonlinear Systems,” 2013 American Control Conference, Washington
D.C.

• K. Vishwajeet “Adaptive Gaussian Mixture Model for Uncertainty Propagation Through Perturbed
Two-Body Model,” M.S. thesis, Department of Mechanical & Aerospace Engineering, University at
Buffalo, Buffalo, NY, August 2013. (Best M.S. Thesis Award from NAGS).

• G. Terejanu, P. Singla, T. Singh and P. Scott, “Adaptive Gaussian Sum Filter for Nonlinear Bayesian
Estimation,” IEEE Transactions on Automatic Control, Vol. 56, Issue 9, pp. 2151–2156, Sep. 2011,
DOI: 10.1109/TAC.2011.2141550.

3 Conjugate Unscented Transform:

The problem of uncertainty characterization in nonlinear systems subject to stochastic excitation and
uncertain initial conditions is of central interest to various domains of science and engineering. One may be
interested in predicting the probability of collision of an asteroid with Earth, control of movement and plan-
ning of actions of autonomous systems, diffusion of toxic materials through atmosphere, the optimization
of financial investment policies, or simply the computation of the prediction step in the implementation of a
Bayes’ filter. All these applications require the study of the relevant stochastic system and involve comput-
ing multi-dimensional expected value integrals with respect to an appropriate probability density function
(pdf). Analytical expressions for these multi-dimension integrals in general exist for linear systems. For
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(a) pdf contours in XY plane at t = 0 (b) pdf contours in XZ plane at t = 0

(c) pdf contours in XY plane at 3.2 hr

Components  = 43 

(d) pdf contours in XZ plane at 3.2 hr

(e) pdf contours in XY plane at 4 hr (f) pdf contours in XZ plane at 4 hr

Figure 1: Contours corresponding to prior pdf in cartesian coordinates with drag using MC(cots) &
AGSF(thick line) at different time(’*’ indicates the centres of components)
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example, the well celebrated Kalman filter provides the analytical expressions for the mean and covariance
of the states of the linear system subject to Gaussian white noise and Gaussian initial condition errors. How-
ever in most other cases one often does not have direct analytical solution for these integrals and has to
approximate integral values by making use of computational methods.

Several computation techniques exist in the literature to approximate the expectation integral with respect
to a Gaussian pdf, the most popular being Monte Carlo (MC) methods, Gauss-Hermite (GH) Quadrature
Rules, Sparse Grid quadratures such as Gauss-Hermite Smolyak (GHS) quadratures, Unscented Transfor-
mation (UT) and Cubature methods. All these methods involve an approximation of the expectation integral
as a weighted sum of integrand values at specified points within the domain of integration. These methods
basically differ from each other in the generation of these specific points. For example, MC methods involve
random samples from the specified pdf while the Gaussian quadrature scheme involves deterministic points
carefully chosen to reproduce exactly the integrals for polynomials. Quadrature rules in higher dimensions
are usually referred to as cubature rules. A cubature rule is said to be exact to degree d, if it can only in-
tegrate all polynomials with degree ≤ d. For 1D (1-Dimensional) integrals, one needs n quadrature points
according to the Gaussian quadrature scheme to exactly reproduce the expectation integrals of polynomi-
als with degree 2n − 1 or less. However, in generic ND, one needs to take the tensor product of n-1D
quadrature points and hence would yield a total of nN quadrature points. This cubature rule is referred to
as Gaussian Quadrature Product rule. Even for a moderate-dimension system involving 6 random variables,
the number of points required to evaluate the expectation integral with only 5 points along each direction
is 56 = 15, 625. This is a non-trivial number of points that might make the calculation of the integral
computationally expensive, especially when the evaluation of function at each cubature point itself can be
an expensive procedure, e.g., one may need to solve a system of partial differential equations to compute
the function of interest. The sparse grid quadratures or Smolyak quadrature schemes in particular take the
sparse product of 1D quadrature rules and thus have fewer points than the equivalent Gaussian quadrature
rules at the cost of introducing negative weights. But fortunately the Gaussian quadrature rule is not minimal
for N ≥ 2 and there exists cubature rules with reduced number of points. This forms the motivation for the
work presented in this paper.

In the perspective of nonlinear filtering where the integrals with Gaussian probability density functions
frequently arise, cubature methods such as the UKF with reduced number of points have tremendous poten-
tial especially in an online scenario. The highly acclaimed Unscented Transform (UT) with only 2N + 1
points is a degree 3 cubature method, where these cubature points were called sigma points. Similar to the
UT method, a more recent development is the Cubature Kalman filter (CKF) which is again exact to degree
3 but uses only 2N points. It can be noticed that the sigma/cubature points of 2N + 1 UT and 2N CKF
can be observed as special cases of a more general structure of cubature points previously presented in for
symmetrical probability density functions.

In this research work, a new methodology is developed to efficiently evaluate expectation integrals in
general N -dimensional space by satisfying higher order moment constraint equations. New sets of cuba-
ture/quadrature points are defined to satisfy moment equations up to the tenth order. The developed method-
ology can be used as an efficient alternative to Gaussian quadrature rule with significantly reduced number
of function evaluations while maintaining accuracy. The proposed methodology extends the main idea of
the conventional unscented transformation method to construct a fully symmetric reduced sigma/cubature
point set with all positive weights that sum up to one and are equivalent to the Gaussian quadrature product
rule of same order. In a numerical context, equivalent to same order implies that for a polynomial of order
2m−1 in N-dimensions, both the new reduced sigma points from the proposed method known as Conjugate
Unscented Transform method (CUT) and the mN quadrature points from the Gaussian quadrature product

4



rule result in same order of relative percentage error. The main idea of the CUT approach is to judiciously
select specific structures for sigma points rather than taking tensor product of 1-D points like in the Gauss
quadrature scheme. This allows us to compute multi-dimension expectation integrals with the same orders
of magnitude in terms of error but achieves this with a far less number of points.
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Figure 2: GH vs. CUT: Simulation Results corresponding to f(X) = (
√

1 + XTX)−3

Fig. 2(a) shows the relative error with respect to the true value of the following expectation integral as a
function of GH quadrature points along each dimension while varying the dimension of input space from 2
to 6.

E[f(X)] =

∫
(
√

1 + XTX)α,X ∈ RN x0N×10.1IN×Ndx (3)

This is a benchmark problem and it had been discussed that computing the expectation of f(X) for negative
values for α is a challenging task since α < 0 leads to a delta-sequence functions. Taking, α = −3 and the
identity covariance of the zero mean Gaussian pdf is scaled down by 0.1 to make the integral value converge
with reasonable number of points. Similarly, Fig. 2(b) shows the relative error for dimensions 2 to 6 using
the CUT methods. Furthermore, Fig. 2(c) shows the minimal number of points required for each method to
achieve at least 0.5% relative error. It is clear that the proposed CUT8 method yields the accuracy of 0.5%
as the GH4 quadrature rule but with much smaller fraction of the number of points.

One could take advantage of these cubature rules in the evaluation of the integrals while maintaining
higher accuracy and thus feasible on-line execution of a filter. To illustrate the effectiveness of the proposed
approach, let us consider a typical air traffic control scenario as shown in Figure 3(a). The kinematics of
the turning motion is modeled by the set of nonlinear equations called ‘CT’- Coordinated Turn. The CT
model is characterized by constant speed and constant turn rate. The turn rate Ω is usually unknown and
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is hence appended to the state vector making the model nonlinear. The system dynamic equations for CT-
model, where the state vector x = [ξ ξ̇ η η̇ Ω]T and sensor model that consists of a radar located at
the origin and measures the range and bearing are:

xk =


1 sin(ΩT )

Ω 0 −1−cos(ΩT )
Ω 0

0 cos(ΩT ) 0 −sin(ΩT ) 0

0 1−cos(ΩT )
Ω 1 sin(ΩT )

Ω 0
0 sin(ΩT ) 0 cos(ΩT ) 0
0 0 0 0 1

xk−1 + νk−1,

[
rk
θk

]
=

[√
(ξk)2 + (ηk)2

tan−1(ηkξk )

]
+ ωk (4)

The process noise νk and measurement noise ωk are independent zero mean gaussian noise processes with
following covariance matrices:

Qk−1 = L1


T 3

3
T 2

2 0 0 0
T 2

2 T 0 0 0

0 0 T 3

3
T 2

2 0

0 0 T 2

2 T 0

0 0 0 0 L2
L1
T

 , Rk =

[
σ2
r 0

0 σ2
θ

]
(5)

The parameters used in the simulation are given as:
T = 5s L1 = 0.16 σr = 100m
Tf = 495s L2 = 0.01 σθ = 1degree

The initial

condition uncertainty is:

x0 = [25000m, −120m/s, 10000m, 0m/s, 0.000001 rad/s]T (6)

P0/0 = diag([10002 m2, 100m2/s2, 10002 m2, 100m2/s2, (1π/180)2 rad2/s2]) (7)

The filters used in the simulations are listed below:
Cubature Kalman Filter (CKF)- with 10 points Unscented Kalman Filter (UKF) - with 11 points
CUT4- with 42 points CUT6- with 83 points
CUT8- with 355 points GH6 - with 7776 points
Particle Filter (PF)- with 5000 sample points
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Figure 3: Simulation Results for Air-Traffic Scenario

A simulation of all these filters are shown in Figure 3(b). The trajectories of each filter shown in the
Figure 3(b) is the average over 200 runs.
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As the dimension of the process model is 5, to avoid a negative weight in the UT a kappa value of
κ = 1 is considered. Each run consists of randomly selecting a point from initial distribution as the initial
condition for the filters, generating the measurements from the true trajectory by the sensor model (4) and
random noise with covariance R. All the filters are initiated with the same initial point and use the same set
of measurements for a particular run. A batch of 200 runs are performed for each filter considered. The root
mean square error RMSE in position,velocity and turn rate for the batch of runs is calculated for each filters
as follows

RMSEpos(k) =

√√√√ 1

200

200∑
i=1

((ξi(k)− ξ̂i(k))2 + (ηi(k)− η̂i(k))2) (8)

RMSEvel(k) =

√√√√ 1

200

200∑
i=1

((ξ̇i(k)− ˙̂
ξi(k))2 + (η̇i(k)− ˙̂ηi(k))2) (9)

RMSEΩ(k) =

√√√√ 1

200

200∑
i=1

((Ωi(k)− Ω̂i(k))2 (10)

The RMSE in position and velocity is calculated individually for each filter estimate with respect to the true
trajectory. The 2-norm in the RMSE is calculated as:

‖RMSEpos‖2 =

√√√√nTf∑
k=1

RMSEpos(k)2, ‖RMSEvel‖2 =

√√√√nTf∑
k=1

RMSEvel(k)2 (11)

where nTf is the number time steps in the simulation. Table 1 gives a quick summary of the 2-norms in the
RMSE errors. Illustrative figures are also shown to compare the various filters. The RMSEpos is shown
in Figures 4(a)- 4(d). For the sake of readability, Figure 4(a) shows the performance of all the filters while
the rest of the Figures 4(b)-4(d) show the same results but with different combinations of filters to avoid the
overlap of the results of different filters. In the figures ‘PF-mu’ denotes the mean estimate of the particle
filter while ‘PF-mo’ represents the mode estimate of the particle filter. One can see that the estimates of the
Particle filter mean and mode are very close. One can see the gradual improvement as the order of the filters
are increased. CKF and UKF being 3rd order rules have the maximum error. While the results of CUT8 and
GH6 are very much comparable to the particle filter.

Table 1: Comparison of 2-norms of RMSE in position, velocity and turn rate

||RMSE||2 in PF −mean PF −mode CKF UKF CUT4 CUT6 CUT8 GH6
Position 2655.80 2843.22 23028.35 16414.90 4251.00 3151.78 3044.16 2982.91
V elocity 544.38 810.77 374946.32 317452.34 119231.01 58900.37 776.35 895.45

Ω 0.8842 1.6476 63.4233 53.7346 26.4342 19.2502 2.0175 2.2820

Finally, this newly developed method is tested for the orbit uncertainty characterization for low Earth
object. For simulation purposes, we consider a satellite in Low Earth Orbit (LEO) at an altitude of 622km.
The initial state probability density function (pdf) of the system is assumed to be Gaussian with the following

7
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Figure 4: Comparison of RMSEpos with Particle Filter Results

mean (in km) and covariance (in km2):

µ0 =



7× 103

0
0
0

−1.0374
7.4771

 P0 =



0.01 0 0 0 0 0
0 0.01 0 0 0 0
0 0 0.01 0 0 0
0 0 0 0.000001 0 0
0 0 0 0 0.000001 0
0 0 0 0 0 0.000001


The covariance matrix reflects a standard deviation of 100m in the initial estimate of the three position
coordinates and a standard deviation of 1m/s in the estimate of velocity. The time period of the satellite is
0.8104 hours. Exponential atmospheric density model was considered to evaluate atmospheric drag term.
Furthermore, first harmonic of non-spheric gravity field, J2 was also considered. To assess the accuracy
of CUT, we consider 100,000 Monte Carlo (MC) runs to be ground truth and compare first four moments
computed through CUT to with those computed through MC runs. There are 3, 6, 10 and 15 distinct first
order, second order, third order and fourth order moments. At each time time t, the 2-norm in the error of
each moment is taken with respect to the corresponding moment calculated by 100,000 MC runs. These are
then denoted as M1(t), M2(t), M3(t) and M4(t). The values are further scaled by the radius of the Earth
and the 2-norm over time is taken. The results are shown in Table 2. From these results, it is clear that CUT
methodology capture the moments of non-Gaussian pdf with a order of magnitude less points. This really
demonstrate the efficacy of the newly developed CUT approach in capturing non-Gaussian behavior with
very few model runs.

Furthermore, the principle of maximum entropy is used to approximate orbit state pdf from moments
computed through CUT points. Figure 5 shows the marginalized pdfs in (x, y) and (x, z) respectively using
the MC sample points in 3D. It can be seen that by using only moments upto order 2, the resultant pdf is
Gaussian that tends to neglect the tail region of the pdf. As higher order moments are considered, the tail

8



Table 2: Error in moments (x,y,z) with respect to 100,000 MC runs
Moment MC UT CUT4 CUT6 CUT8

||M1(t)/Re||2 0.0015 0.0003 0.0003 0.0003 0.0003
(||M2(t)/Re||2)1/2 0.4802 0.1635 0.1650 0.1650 0.1650
(||M3(t)/Re||2)1/2 0.7034 2.0967 1.3654 1.3654 1.3654
(||M4(t)/Re||2)1/2 7.7290 16.4402 3.8991 3.8833 3.8833

No. of Points 10000 13 76 137 745

region is better captured. The marginalized pdfs using CUT4 points are shown in Figure 6. The marginalized
pdfs using CUT6 points are shown in Figure 7. The CUT6 points show improvement compared to the CUT4
points and very much the same as the one obtained by MC runs. This once again reiterate the significance
of newly developed CUT approach in capturing non-Gaussian behavior.

Furthermore, a test case is considered to show the efficacy of the proposed approach in approximating
the probability of collision between two satellites. The initial conditions are chosen such that at the point of
closest approach, the pdf of one satellite is significantly non Gaussian. The satellite initial condition state
vectors of the form [x km, y km, z km, ẋ km/s, ẏ km/s, ż km/s] are taken as

µ1 = [7000, 0, 0, 1.0374,−1.0374, 7.4771] (12)

µ2 = [6729.4309,−318.1595,−1381.8922, 2.2649,−1.1893, 7.1694] (13)

P1 = [0.01, 0.01, 0.01, 1e(−9), 1e(−9), 1e(−9)] (14)

P2 = [0.01, 0.01, 0.01, 1e(−8), 1e(−8), 1e(−8)] (15)

The first satellite is propagated for 1, 72, 860 seconds while the second satellite is propagated for 21, 600
seconds. The satellite that is propagated for over two days has significant non-gaussian nature. For example,
Figure 8 shows a snapshot of 100,000 Monte Carlo runs when the random point clouds of both satellites
intersect. As the time of closest approach is itself a random variable, one does not know the exact time
of maximum probability of conjunction. Hence, the conjunction probability is evaluated for ±20 second
time interval from the time of closest approach calculated from the nominal (mean) trajectories of the two
satellites.

Figure 9 shows the probability of collision computed through various methods. 2.3 million Monte Carlo
(MC) samples are considered to provide ground truth. The full non Gaussian conjunction probability com-
puted via the principle of maximum entropy closely agrees with the MC probability. Further, the Gaussian
approximation significantly underestimates the probability by an order of magnitude. These preliminary
results provides the basis for optimism for the proposed idea.

The findings corresponding to this work are disseminated through following publications:

• N. Adurthi, and P. Singla, “A Conjugate Unscented Transformation Based Approach for Accurate
Conjunction Analysis,” Richard Battin Special Issue of the AIAA Journal of Guidance, Control, and
Dynamics, In Preparation.

• N. Adurthi and P. Singla, “Principle of Maximum Entropy for Probability Density Reconstruction:
An Application to the Two Body Problem,” 2013 Astrodynamics Specialist Conference, Hilton Head,
SC, August 2013.
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(a) (x, y): upto 2nd order (b) (x, y): upto 3rd order

(c) (x, y): upto 4th order (d) (x, z): upto 2nd order

(e) (x, z): upto 3rd order (f) (x, z): upto 4th order

Figure 5: MC: Marginalized pdf reconstruction using all 3D moments
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(a) (x, y): upto 2nd order (b) (x, y): upto 3rd order

(c) (x, y): upto 4th order (d) (x, z): upto 2nd order

(e) (x, z): upto 3rd order (f) (x, z): upto 4th order

Figure 6: CUT4: Marginalized pdf reconstruction using all 3D moments
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(a) (x, y): upto 2nd order moments (b) (x, y): upto 3rd order moments

(c) (x, y): upto 4th order moments (d) (x, z): upto 2nd order moments

(e) (x, z): upto 3rd order moments (f) (x, z): upto 4th order moments

Figure 7: CUT6: Marginalized pdf reconstruction using all 3D moments
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Figure 9: Probability of Collision Computed Through Various Methods
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4 Efficient Conjunction Analysis:

Interactions of and with space debris and Resident Space Objects (RSOs) has emerged as a significant
danger to most space operations. Current technology allows for the tracking of debris down to approxi-
mately five centimeters and from this, a catalog of over 21,000 objects currently in orbit has been generated.
Because of the large number of RSOs and the limited number of sensors available to track these objects, it
is impossible to maintain persistent surveillance on all objects, and, therefore there is inherent uncertainty
and latency in the catalog. Although small, the high velocities obtained by the debris in low-earth orbit
(LEO) and geosynchronous orbit (GEO) warrants a risk of high damage to satellites and other man-made
objects. The examination of this risk, typically referred to as conjunction analysis, is a computationally-
intensive process due to the amount of RSOs considered. A recent incident in February 2009 involving an
unintentional collision between Russia’s Cosmos 2251 satellite and a US Iridium satellite clearly illustrate
the need for effective conjunction analysis. This collision resulted in over 500 pieces of debris which pose
an additional risk to other space assets. Brute force conjunction analysis algorithms has combinatorial com-
putational complexity and hence require O(N2) computations, where N is the number of RSOs considered,
and typically rely on numerical simulations of a mathematical model of the underlying physics of the orbital
debris. These simplified methods, however, do not account for uncertainty in the location of the debris.

Standard conjunction analysis involves the acquisition of several quantities including the time of closest
approach, the relative distance between the objects in question, and the probability of collision. A prelimi-
nary step is often taken to rule out any conjunctions. In this case, the geometric location of two objects is
used to show that the objects will never cross paths. Once certain collisions are ruled out, the remaining pos-
sibilities can be investigated. The objects in question are propagated through a dynamical model, and their
relative distance computed. An important step in determining potential collisions is to delineate between
the orbit of each RSOs. Objects are separated by their orbital height from the surface of the Earth. In this
sense, it is assumed that objects in low-Earth orbit (LEO) will not collide with objects in a geosynchronous
orbit (GEO). The first step is compute the distance between the largest perigee value and the smallest apogee
value from the two orbits. If this distance is less than some specified distance tolerance, then the collision
of two satellites will be examined. The next step is to determine whether or not a close approach between
the two satellites occurs. If a close approach has been determined, an error ellipsoid must be constructed to
further assess the risk of collision. The error ellipsoid is created about the first satellite of interest using the
uncertainty in the satellites location. This results in creating the ellipsoid based on the covariance matrix
designated for the aforementioned satellite, and ensuring the major axis is aligned with the satellite’s veloc-
ity vector. The next step in analyzing a possible collision involves determining the probability of collision
of two objects.

Prior to computing the probability of collision, a close approach between two objects must be determined.
From this, the next step is to compute the relative velocity vector between the two objects of interest. It is
assumed that all covariance data is accurate and available at each time step. For simplicity, it is also assumed
that the two objects in question are spherical to remove any attitude dependencies. Associated with each
object is a covariance matrix, which is used to specify an error ellipsoid about that object. Each error
ellipsoid provides n standard deviations from the mean location of the object, where the value for n is to be
specified by the user depending on the desired accuracy. As it is assumed that the objects are independent
and identically distributed (i.i.d), the two covariance matrices are summed to create a large n − σ error
ellipsoid, where n is the same for both objects. This error ellipsoid is centered about the first object of
interest. A virtual plane termed “the encounter plane” is then formed perpendicular to the relative velocity
vector, and the error ellipsoid is projected onto this plane, creating an ellipse. To represent all possible
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conjunctions, the first and second objects are merged to form one spherical object, whose radius is equal to
the sum of the two radii in question. This combined object is placed such that it follows the relative velocity
vector. From there, the new object is projected onto the encounter plane. The probability of collision is now
effectively reduced to a two-dimensional computation.

This outline provides a complete brute-force method for determining conjunctions. While complete,
certain faults prevent this method from its application to all scenarios. For correct application, this method
requires that the size of all objects be known. Also required is the condition that the miss distance be
greater than or equal to the combined object radius. The most notable downside to this approach, however,
is the computational load required to compute these conjunctions. For N objects, N2 interactions must be
considered. While this computational burden is the main motivation behind the proposed method, previous
attempts have been made towards reducing the computational load of conjunction analysis.

Simple attempts such as considering only objects that fall within a specified orbit, and thus a certain
distance from of one another have been made in an effort to reduce the computational load required for
conjunction analysis algorithms. These efforts, however, do not take into consideration the possibility that
although two objects may seem very distant from one another, the uncertainty in their locations could prove
to be high, warranting a possible collision. In this research work, we introduce a hierarchical approach
using a kd-tree with the aid of a probability-based distance metric known as the Hellinger distance. Such
approaches have been extensively studied in the gravitational N-body problem literature. Our approach is
inspired by the great efficiencies obtained by the use of hierarchical approaches and in particular kd-tree
based approaches.

The nodes of a kd-tree are not physically created; they are used simply to index data points. The standard
kd-tree implementation is described as “top-down” as this is the direction of construction of the tree. The
root box, which can be described as the space surrounding the entire data set, is first initialized. The root
box is then divided along a specified dimension, typically the longest available, creating two nodes. Once
divided, the location of each data point is examined to determine their respective placement in the kd-
tree - if the particle is leftward of the division, it is placed into the leftmost node, and vice versa for a
rightward particle. From here, the procedure is repeated until only one particle lies in each node (box).
Upon completion of the final divisions, the remaining boxes, each populated with one data point, are termed
leaves. This insertion procedure is termed recursion, and it’s simplicity governs the favored implementation
of kd-trees. It must be noted that kd-trees do not warrant the creation of a physical mesh but rather, each
division is present only to discern the location of each particle. The boxes are stored simply to index each
particle. It must also be noted that while the original order of the data set is maintained, during construction
of the kd-tree the data set is organized in increasing order to ensure rapid construction of the kd-tree. A
simplified kd-tree algorithm is presented below:

With the kd-tree implementation discussed, the nearest-neighbor search can be examined. A standard
nearest-neighbor (NN) search is conducted by computing the Euclidean distance between all possible com-
binations of particles. By sorting the results, the nearest neighbor to each particle can be determined. Kd-
trees aid in NN searches by reducing the computational load required. The computational complexity of a
standard “brute-force” NN search isO(N2) whereas a kd-tree based search reduces this load toO(NlogN),
where N is the number of particles considered. A kd-tree NN search algorithm is outlined below:

The standard NN search via a kd-tree implementation is clearly more efficient than a brute-force NN
search algorithm, which requires the computation of the distance between all possible combinations of
particles. It can immediately be seen that the kd-tree lends itself towards conjunction analysis and other
particle collision applications.
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Algorithm 1 Standard kd-tree Implementation
1: Initialize size of Root Box based on dataset.
2: Reorganize dataset based on median value. Note: original order is maintained elsewhere. Let p denote

a single datapoint
3: if p< division then place p into leftmost node.
4: else
5: place p into the rightmost node.
6: if node contains more than one point then divide node.
7: else
8: store as leaf.
9: Continue until each node becomes a leaf, i.e. each node contains only one datapoint.

Algorithm 2 Kd-Tree Nearest-Neighbor Search
1: Determine required number of nearest neighbors.
2: for p = 1 to Number of points do
3: begin
4: Locate the particle of interest in the kd-tree.
5: Traverse up the tree, opening boxes until the required number of nearest neighbors is met.
6: Compute the distance from the particle of interest to the nearest neighbors found.
7: Store the minimum distance value, dmin.
8: Compute the distance from the particle of interest to all remaining nodes (boxes) in the kd-tree, dbox.
9: if dbox < dmin then open the box and compute the distance from the particle of interest to the

enclosed particles. Update dmin and nearest neighbors.
10: end
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Figure 10: Comparision of Required CPU Time for Brute-Force and Kd-Tree Nearest Neighbor Searches

It must first be noted that as each particle possesses an uncertain location, the mean value of each particle
is used to construct the kd-tree. The main modification appears in the NN search implementation. As op-
posed to using Euclidean distance, a probabilistic distance metric is to be employed to compute the distance
between particles of interest. It must be noted, however, that in computing the distance between a single
particle and a given node (box), the Euclidean distance metric is still employed. The interaction between
two particles, however, requires a probabilistic distance metric. Here, the Kullback-Leibler divergence, the
Bhattacharyya distance, and the Hellinger distance have been considered.

A preliminary result of this study is depicted in Figure 10, showing the approximate CPU time for
both a brute-force and a tree-based nearest neighbor computation as a function of the number of resident
space objects. It can be seen that the kd-tree based approach offers a marked improvement in the required
CPU time for the modified nearest neighbor search when compared to the brute-force approach. The kd-
tree method corroborated results obtained by the brute-force method, ensuring that the Hellinger distance
provides a link to the actual probability of collision.

The findings corresponding to this work are disseminated through following publications:

• N. Adurthi, and P. Singla, “A Conjugate Unscented Transformation Based Approach for Accurate
Conjunction Analysis,” 2014 AIAA/AAS Astrodynamics Specialist Conference, San Diego, California,
4 - 7 August 2014.

• M. Mercurio, “A Non-Combinatorial Approach for Efficient Conjunction Analysis,” M.S. Thesis, Uni-
versity at Buffalo, June 2014.

• M. Mercurio and P. Singla, “A Hierarchical Tree Code Based Approach for Efficient Conjunction
Analysis,” 2013 Astrodynamics Specialist Conference, Hilton Head, SC, August 2013.

• M. Mercurio, P. Singla and A. Patra, “A Hierarchical Tree Code Based Approach for Efficient Con-
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junction Analysis,” 2012 AIAA/AAS Astrodynamics Specialist Conference, Minneapolis, MN, Aug.
2Aug. 5, 2012.

5 Optimal Information Collection:

Often the problem of optimally locating or configuring the sensor parameters is important as it can
profoundly effect the performance of a particular sensor. For example given the uncertain nature of space
debris and limited measurements or cost, one is always interested in optimally configuring/scheduling the
sensors in future-time to make the ‘best measurements’ possible, as good measurements can lead to better
decisions or improved estimates. Often in directional sensors with limited field of view (FOV) such as radar,
laser, sonar or infrared ranging devices, it is important to point the sensor at the target (possibly moving).
Hence, the problem of deploying and configuring such sensors with limited FOV becomes an integral part
of the measurement process. The concept of sensor management is not new and is still an active field of
research where many have considered various utility functions to describe sensor performance.

The problem of optimal sensor placement and motion coordination of mobile sensor networks has been
addressed in target tracking literature. The objective function that measures the sensor performance is
generally taken as the Fisher Information matrix (FIM). This sensor performance cost is apt as the inverse of
the FIM is known as the Cramer Rao lower bound (CRLB) which is the lower bound of the covariance of the
parameter estimates. As an estimate with lower covariance is always desired, minimizing this lower bound or
equivalently by maximizing an appropriate norm of the FIM one can achieve desired sensor configurations.
But it is emphasized that the minimization is done for a bound which intuitively implies better performance.
Conventionally, following metrics for the fisher information matrix are used:

• D-optimality (−ln{det(FIM)})

• E-optimality or maximum eigenvalue (λmax(FIM−1))

• A-optimality (tr(FIM−1))

• Sensitivity criterion(−tr(FIM))

Recently, the principle of maximum mutual information was used for dynamic sensor selection in case
of linear Gaussian models. Often information utility functions have neat analytical expressions when the
underlying probability density functions(pdf) are Gaussian. For a general pdf, the problem of computing
these information measures can be a challenge and hence the pdf is usually approximated by an equivalent
Gaussian pdf. Gaussian approximation in some cases might not be appropriate, for example when the
underlying pdf is multi-modal, a single Gaussian approximation would neglect partly or even completely
the high/low probability regions.

The objective of this research work is to optimally manage various sensors configurations to tradeoff be-
tween competing indices such as energy consumption, coverage of domain and the information gathered. A
suitable information reward for taking action (sensor modality and placement) can be the expected one step
reduction in the total uncertainty of the system state. Due to the uncertain nature of the target with nonlinear
dynamics, the evolution of cost function is essentially stochastic and hence the problem can be categorized
as a stochastic optimal control problem. As the mutual information measure is generally not convex in the
control variable, the problem of even solving for a numerically approximate solution is challenging and at
times intractable.
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Figure 11: UAV-Sensor-Target Schematic

A generic problem scenario is depicted in Figure 11, where a controllable platform such as an Unmanned
Aerial Vehicle (UAV) with a configurable sensor is to move and configure the sensor parameters such that
it can make ‘better’ measurements of the uncertain uncooperative target. One is also interested in the cases
when there are constraints on time, fuel or even the number of possible measurements. Let the dynamics of
the UAV with known initial condition s0 be described by

sk+1 = F (sk, uk) (16)

A reasonable assumption is made that there is no uncertainty in the UAV state dynamics. The state of the
UAV typically consists of position, velocity and heading angle. The target dynamics with uncertain initial
conditions x0 ∼ p(x0) is given by an assumed non-linear model

xk+1 = f(xk) + νk (17)

where randomness in its motion is modelled by Gaussian sequence νk ∼ N (ν : 0,Qk). The measurement
model is a function of the states of the UAV (s), sensor parameters (θ) and the target (x) as the measurements
are made with respect to the coordinate frame of the UAV and are then converted to the corresponding
measurements in the ground reference frame.

zk+1 = h(sk+1,xk+1, θk+1) + g(sk+1,xk+1, θk+1)ωk+1 (18)

where ωk+1 ∼ N (ω : 0,Rk+1).The state pdf evolves with time according to the Chapman-Kolmogorov
equation (CKE). As the measurements are made at every time step the pdf of the target state is updated using
Bayes’ rule (BR) as

CKE : p(xk+1|zk, sk) =
∫
p(xk+1|xk)p(xk|zk, sk) dxk

BR : p(xk+1|zk+1, sk) =
p(zk+1|xk+1,sk)p(xk+1|zk,sk)

p(zk+1,sk)

(19)

The objective is to find a sequence of control inputs [uk, θk] to the UAV (and mounted sensor) to minimize
a particular cost function. The open loop optimal control problem can be framed as
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Min : J = ψ[sNT
] +

NT−1∑
k=0

− I(xk, zk|sk, θk)︸ ︷︷ ︸
Mutual Information

+ sTkAsk + uTkBuk︸ ︷︷ ︸
UAV energy

 (20)

constraint to :


sk+1 = F (sk, uk)

p(xk+1) =
∫
p(xk+1|xk)p(xk) dxk

Cθ(θk) ≤ 0 and Cu(uk) ≤ 0
p(x0)

s0

(21)

The cost function consists of two parts: Mutual Information, that is to be maximized and the energy (fuel)
consumed by the UAV is to be minimized. Ideally the optimal control sequence determined at the initial
time is no longer valid right after the first measurement update and a new optimal control problem needs
to be solved. This might be computationally expensive to perform at every time step. Alternatively it is
logical to solve a new optimal control problem only when there is significant change in the target state pdf
p(xk|zk, sk) at time k when compared to the predicted target pdf p(xk) at time k for which the optimal
control sequence was solved.

DKL (p(xk|zk, sk)||p(xk)) ≥ Dthreshold (22)

In this work, the principle of Dynamic Programming (DP) is adopted to solve for the optimal action/control:

J∗NT
(sNT

) = ψ[sNT
]

J∗k (sk) = min
uk

{
−I(xk, zk|sk, θk) + uTkBuk + J∗k+1(Fk(sk, uk))

}
Due to the highly nonlinear FOV constraints, information measure can change abruptly and optimization
algorithms which involve gradients are usually not applicable. A discrete DP formulation is highly advan-
tageous as the process does not involve gradients and can also be made parallel. In addition it is known
that the computation time strongly depends only on the level of discretization. Thus by adding multiple
targets and multiple sensors the computation time is weakly influenced. Both Adaptive Gaussian Mixture
Model (AGMM) and Conjugate Unscented Transformation (CUT) are used to solve the CKE equation for
the optimal control problem.

For the purpose of simulation, the sensor model equations as described in (18) is composed of the true
sensor model h(xk+1, sk+1, θk+1) and an assumed function g(xk+1, sk+1, θk+1) that penalises the measure-
ment made outside the FOV. Fig 12a, shows one kind of penalty g(.).

In this case study, the optimal trajectory to track a moving target is sought. For this simulation the target
is assumed to be an airplane with state vector x = [ξ, ξ̇, η, η̇,Ω]T making a Coordinate turn (CT):

xk =


1 sin(ΩT )

Ω 0 − 1−cos(ΩT )
Ω 0

0 cos(ΩT ) 0 −sin(ΩT ) 0

0 1−cos(ΩT )
Ω 1 sin(ΩT )

Ω 0
0 sin(ΩT ) 0 cos(ΩT ) 0
0 0 0 0 1

xk−1 + νk−1, (23)

[ξ, η] are the position coordinates of the airplane and [ξ̇, η̇] are the corresponding velocities, Ω is the turn
rate. Here the T = 1s is the discrete time step for the target dynamics. The assumed process noise νk−1
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Figure 12: Sensor-Target Schematic

has covariance matrix Qk−1 with parameter (L1, L2) = (0.02, 10−5). The measurement model consists of
range and bearing angle measurements within the FOV of the sensor.

h(x, s, θ) =

[√
(ξ − s1)2 + (η − s2)2

tan−1
(
η−s2
ξ−s1

) ]
(24)

The FOV consists of a circular sector with angle 60o and radius 50m. A measurement update is performed
only when the true target position falls within the FOV. The constant measurement noise covariance is
Rk+1 = diag[0.52 m2, (1π/180)2 rad2]. As the measurement model is not a function of the velocity
of the target, the mutual information can be computed from the marginalised pdf .The DP algorithm is
initially computed for the whole simulation time i.e 25 time steps. A new optimal trajectory is computed
at time step 12 when the threshold Dthreshold in eqn (22) exceeds 10 by solving the DP problem from
time step tk = 12 to tTf = 25. To calculate the information and propagate the state pdf the minimal
cubature points of CUT6 are used. For this particular simulation the initial condition uncertainty is taken
as p(x0) = 0.5N (x : µ1, P1) + 0.5N (x : µ2, P2), where the Gaussian components represent information
from two different sources. The values for the means and covariance are:

µ1 = [10,−1, 10, 5,−5π/180]T µ1 = [10, 2, 10, 3,−3π/180]T

P1 = diag[1, 0.5, 1, 0.5, 10−3] P2 = diag[1, 0.5, 1, 0.5, 10−3]

A random point from this distribution is selected as the true initial position of the target. It is emphasized
that this true location along with its trajectory is unknown to the DP problem and is only used to generate
random measurements when the target is in the sensor FOV, otherwise there is no measurement update of
the state pdf. Fig 13(f) shows the drop in the joint entropy of the target state pdf with every measurement
compared to the pure propagation of the target pdf. During the initial time steps it can be seen that there is
no decrease in the uncertainty as the target pdf evolves. This is because the target is not visible to the sensor.
Figs 13(a) - 13(e) show snapshots of the simultaneous motion of the sensor along the optimal trajectory and
the updated state pdf of the target.

Finally, we solve an information optimization problem to manage a network of ground based sensors
to maximize the mutual information on the system of space objects being observed by the network. A
limited look-ahead policy is used to solve the dynamic programming problem that schedules the elements of
a ground based surveillance network to maximize the mutual information. Simulation results will be used
to validate the sensor management algorithms reported in the paper.

Figure 14 shows various time snapshots of the sensor management algorithm performance where 10
RSOs are tracked using 5 radar observation stations with known sensor uncertainties at various locations on
the Earth. Unscented transformation is used to evaluate the FIM and computation of the mutual information
performance measure for sensor management. Figure 15 shows the time history of the Frobenius norm of
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Figure 13: Optimal Trajectory

the covariance matrix of each object under surveillance using the optimal sensor schedule generated by our
approach. The reduction of covariance of all the objects being tracked demonstrates the optimism of the
technical approach discussed in the full paper. The full paper presents all the technical details of the sensor
management algorithms.

The findings corresponding to this work are disseminated through following publications:

• N. Adurthi, P. Singla and M. Majji, “Optimal Sensor Tasking for Space Situational Awareness,”
Richard Battin Special Issue of the AIAA Journal of Guidance, Control, and Dynamics, In Prepa-
ration.

• N. Adurthi, P. Singla and M. Majji, “Information theoretic Optimal Sensor management for Efficient
Space surveillance,” 2014 AIAA/AAS Astrodynamics Specialist Conference, San Diego, California, 4
- 7 August 2014.

• N. Adurthi and P. Singla, “Information Driven Optimal Sensor Control for Efficient Target Localiza-
tion and Tracking,” 2014 American Control Conference, Portland, OR, June 4–6, 2014.

• N. Adurthi, P. Singla and T. Singh, “Optimal Information Collection for Nonlinear systems- An Appli-
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Figure 14: Snapshots of the simulation at various times
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Figure 15: Reduction in Frobenius norm of covariance of each object with time

cation to Multiple Target Tracking and Localization,” 2013 American Control Conference, Washington
D.C.

• R. Madankan, P. Singla and T. Singh, “Optimal Information Collection for Source Parameter Estima-
tion of Atmospheric Release Phenomenon,” 2014 American Control Conference, Portland, OR, June
4–6, 2014.

• K. Vishwajeet, N. Adurthi and P. Singla, “Optimal Information Collection for Space Situational
Awareness,” 2014 SIAM Conference on Uncertainty Quantification, Savannah, GA, March 31–April
3, 2014.

• N. Adurthi, R. Madankan and P. Singla, “Optimal Information Trajectory Design for Dynamic State
Estimation,” 2014 SIAM Conference on Uncertainty Quantification, Savannah, GA, March 31–April
3, 2014.

6 Polynomial Chaos based Bayes Filter:

Two new recursive approaches have been developed to provide accurate estimates for posterior moments
of both parameters and system states while making use of the generalized Polynomial Chaos (gPC) frame-
work for uncertainty propagation. The main idea of the gPC method is to expand random state and input pa-
rameter variables involved in a stochastic differential/difference equation in a polynomial expansion. These
polynomials are associated with the prior pdf for the input parameters. Later, Galerkin projection is used
to obtain a deterministic system of equations for the expansion coefficients. The first proposed approach
(gPC-Bayes) provides means to update prior expansion coefficients by constraining the polynomial chaos
expansion to satisfy a specified number of posterior moment constraints derived from the Bayes’ rule. The
second proposed approach makes use of the minimum variance formulation to update gPC coefficients. The
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main advantage of proposed methods is that they not only provide point estimate for the state and parameters
but they also provide statistical confidence bounds associated with these estimates.

To illustrate the effectiveness of the developed ideas, let us consider the example involving the the Duffing
oscillator:

ẍ+ ηẋ+ αx+ βx3 = sin(3t) (25)

y(tk) =

[
x(tk)
ẋ(tk)

]
+ νk (26)

For simulation purposes, nominal parameter values are assumed to be given as:

η = 1.3663, α = −1.3761 β = 2

The initial states are assumed to be normally distributed:

x(0) = N (x0| − 1, 0.25), ẋ(0) = N (ẋ0| − 1, 0.25)

Hence, ψk(ξ)′s are chosen to be Hermite polynomials to describe Gaussian distribution of states. As well,
4th order gPC expansion is considered to analyze the effect of initial condition uncertainty.

To corroborate the efficacy of the PCQ approach to capture the evolution of the statistics of states of (25),
relative error in Frobenius norm of the difference between different moments of states with respect to 105

Monte Carlo runs at t = 2sec. is evaluated. Table 3 shows that the relative error decreases as the number of
quadrature points increases. It is clear that one can obtain a better approximation for three central moments
using only 16 quadrature points, relative to the 103 MC runs.

Table 3: Relative error in Frobenius norm of the difference between moments of states and 105 Monte Carlo
runs at t = 2sec.

Number of Quadrature Points Mean 2nd Central Moment 3rd Central Moment
12 4.5526% 100% 100%
22 0.3217% 20.3050% 98.3149%
32 0.0329% 3.9559% 28.5219%
42 0.0537% 0.5202% 2.5084%

103 MC Simulations 0.1199% 6.0715% 99.2219%

To verify the efficiency of our method, we compared the performance of the proposed methods with
the extended Kalman Filter (EKF) and Particle Filter (PF) results. The measurement data is assumed to
be available at a sampling frequency of 1Hz. A random sample of initial conditions is taken from initial
condition distribution to generate the noise-free measurement data. The noise-free measurement data is then
corrupted with a Gaussian white noise of zero mean and variance being:

R =

(
σ2 0
0 σ2

)
σ is assumed to be 0.05 in our simulations.

Fig. 16(a) and Fig. 16(b) illustrate the state estimation error for x and ẋ by using EKF method, respec-
tively. The solid blue line represents the difference between the true value and its mean estimate. Dashed
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Figure 16: Error and 3σ Bounds for the EKF Approximated Posterior Mean for Duffing oscillator
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(b) ẋ(t)

Figure 17: Error and 3σ Bounds for PF Approximated Posterior Mean for for Duffing oscillator

green line shows −3σ bound while the dashed red line represents the 3σ bound. From these plots, it is
clear that the state estimation error increases significantly with time although it is always bounded by 3σ
bounds. The poor performance the EKF can be attributed to strong nonlinearities and sparse data resulting
from sampling at 1 Hz.

The state estimation error for x and ẋ by using Particle Filter have been shown Fig. 17(a) and Fig. 17(b),
respectively. The solid blue line represents the difference between the true value and its mean estimate.
Dashed green line shows minimum bound while the dashed red line represents the maximum bound. These
plots show that the state estimation error decreases during the time, while using PF.

Furthermore, Fig. 18 shows the error in state estimates along with its 3σ bounds using the gPC based
minimum variance estimator. Once again, the estimation error along with 3σ bounds converge to zero over
the time which can be again attributed to the posterior density function being a delta function as number of
measurements increases.

Fig. 19 shows the error in state estimates using the gPC-Bayes method for various values of Nm. The
solid blue line represents the difference between the true value and its mean estimate. Dashed green line
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Figure 18: Error and 3σ Bounds for the Minimum Variance Approximated Posterior Mean for Duffing
oscillator

Table 4: RMSE error in mean estimate of states x and ẋ while using different estimation methods
Method ex eẋ

EKF 0.1307 0.3858
PF 0.0408 0.0508

minimum variance 0.0359 0.0527

gPC-Bayes
Nm = 1 0.1173 0.0695
Nm = 2 0.0347 0.0531
Nm = 3 0.0336 0.0528

and dashed red line represent the min and max bounds on estimation errors, respectively. It is clear that
estimation error and corresponding 3σ bounds for estimation error converge to zero over the time. This is
due to the fact that posterior density function finally converges to a dirac-delta function around the truth
which is expected as number of measurements increases over the time. Also, it should be noticed that 3σ
bounds becomes more and more tighter as one increases the number of matching moment constraints, i.e.,
Nm. From these results, it is clear that the proposed methods perform very well in not only estimating the
posterior mean but posterior density function also.

To summarize, the root mean square error over time between the mean estimate of states and their true
value has been shown in Table 4. As this table represents, gPC-Bayes and PF method perform very well
in estimation of both states x and ẋ, while EKF results in high error between the mean estimate and actual
value of the states. It is clear from Table 4 that by increasing the number of matching moment constraints
(Nm) in gPC-Bayes method, the error in estimation of states decreases.

The findings corresponding to this work are disseminated through following publications:

• R. Madankan, P. Singla, T. Singh and P. Scott, “Polynomial Chaos Based Method for State and Pa-
rameter Estimation,” AIAA Journal of Guidance, Control and Dynamics, Vol. 36, No. 4 (2013), pp.
1058-1074, July 2013, DOI: 10.2514/1.58377.

• R. Madankan, P. Singla, T. Singh and P. Scott, “Polynomial Chaos Based Method for State and Pa-
rameter Estimation,” 2012 American Control Conference, Montreal, Canada, June 27-29, 2012.
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(c) Estimation Error for x (Nm = 2)
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(e) Estimation Error for x (Nm = 3)
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Figure 19: Estimation Error and 3σ Bounds for the gPC-Bayes Approximated Posterior Mean for for Duffing
oscillator
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7 Concluding Remarks

In summary, significant progress has been made towards characterizing non-Gaussian state density func-
tion. Two new methods adaptive Gaussian mixture model (AGMM) and conjugate unscented transformation
(CUT) have been developed for this purpose. AGMM method solves the Fokker-Planck-Kolmogorov equa-
tion associated with orbital dynamics model. Furthermore, sparse approximation tools have been used to
identify the Gaussian kernels which best approximate the state pdf. The CUT methodology provides effi-
cient means to compute higher order moments of state density functions. The primary objective of CUT
methodology is to find a fully symmetric sigma/cubature point set with reduced number of points that is
equivalent to the set of cubature points of Gaussian quadrature product rule of same order. Equivalent to
same order implies that for a polynomial of order 2m − 1 in generic N -dimensions, both the new reduced
sigma point set from the proposed method known as Conjugate Unscented Transform method (CUT) and the
mN quadrature points from the Gaussian quadrature product rule result in same order of relative percentage
error. In this work, a closed form expression for these new sets of point is provided to satisfy up to 8 central
moments. It is shown that the proposed method provides a significant reduction in function evaluations to
compute multi-dimension expectation integrals. For example, the proposed method needs only 355 and
745 function evaluations to compute the expectation integral for a polynomial function of degree 8 in the
5- and 6-dimensional space, respectively whereas the Gaussian quadrature product rule would need 3,125
and 15,625 function evaluations for the same 5- and 6-dimensional space respectively. Finally, optimal
control problem is posed to optimize sensor locations and other modalities to better track a target object.
The main highlight of this work is to compute information theoretic metrics corresponding to non-Gaussian
target state pdfs to describe the current situation of the target state.
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